系统工程生命周期流程集、基于模型的系统工程(MBSE)方法和先进的IT使能技术的应用,适应九游会集团从传统系统、复杂系统到复杂组织体系统的发展和演进趋势,满足不断变化的、各利益攸关方的需求,实现产品开发体系从传统的基于文件的模式转变为基于模型的工程协同,使模型应用从设计到仿真、制造等环节不断延伸覆盖,持续提升航空产品的研制能力和水平。
需求工程
如何正确、完整的识别系统的利益攸关者,并将其需要转变为可实现、可验证的结构化的系统需求,进而指导设计过程,确保最终交付的系统满足利益攸关者的需要,是需求工程的核心价值。在传统的系统工程过程中,需求在制定时以文件的方式表达,通过语言进行传递,具有不确定性和模糊性、多个文件间存在非关联性。信息技术的进步不仅使得需求的表达、传递更加清晰和高效,同时通过建模与虚拟仿真技术使得工程师可以在概念阶段即可完成对系统功能逻辑和功能/性能需求的确认与验证,实现数字空间下V型研发模式的快速迭代。
设计工程
设计工程主要包括概念设计、工程设计和工艺设计。过去的概念设计阶段是通过二维图样和三维模型来做辅助,现在通过两化融合创新应用,可以实现设计知识的嵌入与重用,参数化的快速建模,并通过组件化、模块化的工具集成,实现流程驱动的多学科快速迭代、优化与权衡的智能设计,达到缩短设计周期、降低风险和节约成本。
过去的工程设计主要是基于设计分离的分散设计和基于图样的几何信息标注,最后组装成数字或物理样机。两化融合的创新应用,使得全三维数字样机在工程设计阶段得到深入应用,并实现了产品全生命周期的全数字量传递,使数字样机成为各业务关联的唯一协调依据,驱动多专业并行工作,确保设计的一次成功。
过去的工艺设计环节是依据设计模型,重构工艺模型,开展工艺设计。现在通过两化融合的创新应用,可以直接引用设计模型开展数控加工、装配工艺设计,甚至可以开展整个生产线车间现场的三维仿真,直接使用三维数模实现加工指令的生成,通过三维工艺验证与优化确保加工装配成功率,并且提高整个工艺现场的指导性,支持了精益生产模式。
制造工程
IT技术的应用,装配、工艺、检测等制造专业可以直接使用三维设计模型开展工艺设计与仿真(如:数控加工和3D打印的工作),还可以进行物流、车间、厂房的设计与仿真,确保了工厂、生产线的一次建设和产品一次性加工、装配的成功率,支持柔性化生产和精益生产模式的实现。
产业协同依据在设计工程、制造工程阶段生成的详细的产品全生命周期的数据,包括设计数据、工艺规程等,依托生产企业的设计、工艺资源和能力,通过协同平台,完成设计与设计、设计与制造、制造与制造的协同工作。最终生产出符合技术要求的物理产品。
试验工程
传统的基于物理样机的仿真试验验证,成本高,周期长。应用IT技术后,在设计阶段就基于虚拟样机,建立结构、流体、电场、磁场和声场等各种仿真模型,进行各种仿真试验,从而较大幅度地减少物理试验,提高产品研制效率,降低研制成本。
综合确认
传统的综合、确认与验证技术是基于设计经验提出试验规范,利用物理样品/样机进行试验,分散管理各试验数据并以手工方式进行数据分析。通过与信息技术的融合,数字设计与虚拟试验同步开展,减少了工程反复,部分替代物理试验,降低了制造成本,缩短了制造周期,统一试验管理和分析的改进,提高了产品开发的可靠性。